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The evolution of a single hairpin vortex-like structure in the mean turbulent field of
a low-Reynolds-number channel flow is studied by direct numerical simulation. The
structure of the initial three-dimensional vortex is extracted from the two-point spatial
correlation of the velocity field by linear stochastic estimation given a second-quadrant
ejection event vector. Initial vortices having vorticity that is weak relative to the mean
vorticity evolve gradually into omega-shaped vortices that persist for long times and
decay slowly. As reported in Zhou, Adrian & Balachandar (1996), initial vortices that
exceed a threshold strength relative to the mean flow generate new hairpin vortices
upstream of the primary vortex. The detailed mechanisms for this upstream process
are determined, and they are generally similar to the mechanisms proposed by Smith et
al. (1991), with some notable differences in the details. It has also been found that new
hairpins generate downstream of the primary hairpin, thereby forming, together with
the upstream hairpins, a coherent packet of hairpins that propagate coherently. This
is consistent with the experimental observations of Meinhart & Adrian (1995). The
possibility of autogeneration above a critical threshold implies that hairpin vortices
in fully turbulent fields may occur singly, but they more often occur in packets. The
hairpins also generate quasi-streamwise vortices to the side of the primary hairpin
legs. This mechanism bears many similarities to the mechanisms found by Brooke
& Hanratty (1993) and Bernard, Thomas & Handler (1993). It provides a means
by which new quasi-streamwise vortices, and, subsequently, new hairpin vortices can
populate the near-wall layer.

1. Introduction
A central flow feature that can serve as the starting point in the development of a

unified picture of the turbulent wall layer is the hairpin or horseshoe vortex. Since the
original proposal by Theodorsen (1952), the importance of hairpin or horseshoe-type
vortices in turbulent wall layers has become widely, albeit not totally, accepted. In early
models, horseshoe vortices were considered to have Ω-shaped head and neck regions
that connect the head to long spanwise vortex legs. Subsequent investigations have
indicated the vortex structure to be more like a hairpin with a pair of counter-rotating
quasi-streamwise vortices near the wall instead of a spanwise vortex (Robinson 1991).
The hairpins are not usually observed to posses perfect spanwise symmetry with
the two counter-rotating vortex legs of equal strength. Instead, spanwise asymmetric
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one-sided hairpins, also known as ‘canes’, are often observed (Guezennec & Choi
1989). Nevertheless, a picture of the turbulent wall layer as a distribution of hairpin
vortices provides a reasonable explanation for many observed flow features. The long
quasi-streamwise legs of the hairpin structures particularly explain the near-wall low-
speed streaks. Passage of a rapidly lifting hairpin head and the strong pumping of
fluid between the hairpin legs create a burst event with an associated second quadrant
velocity fluctuations (Q2 event). Near-wall shear layers can be explained as the result
of the low-speed near-wall fluid pumped up between the vortex legs encountering
the high-speed free-stream fluid. Perhaps most importantly, the spanwise spacing of
low-speed streaks is associated with the spanwise width of the hairpin legs, and the
characteristic 30◦ to 50◦ angle seen in the structure of wall turbulence is associated
with the angle at which hairpins incline with respect to the wall.

Our understanding of the turbulent wall layer based on hairpin-like vortex struc-
tures can hardly be considered complete. Important questions still remain unanswered
as to how these vortical structures grow from within the buffer layer into the outer
regions of the boundary layer. Head & Bandyopadhyay (1981) suggest that narrow,
buffer-layer scale hairpin vortices of spanwise width 100 viscous wall units, grow
in length and extend from near the wall all the way up to the outer edges of the
boundary layer, maintaining approximately the same spanwise size. This picture of
hairpin growth implies vortex structures whose height-to-width aspect ratio becomes
infinite with Reynolds number. It seems unlikely that such thin vortices can survive
in an environment of strong local turbulent eddies. Hence, it is necessary to establish
how near-wall vortical structures grow in size and are related to outer-layer vortical
structures. Different scenarios are possible: the growth may occur by continuous in-
crease of the lengthscale of the vortex or by discrete steps due to pairing and merger
of the vortices or some combination of the two. While the continuous growth model
seems simple, as the hairpin vortices grow bigger, the neighbouring vortices must
become very close to each other in the spanwise direction and mutual interaction
may at some point occur. On the other hand, fundamental questions also exist as
to whether the vortex mergers that might occur can produce self-similar vortices or
merge to generate a new class of structures. Although a self-similar merger process is
appealing, it is difficult to establish conclusively based on our current understanding
of the detailed mechanisms. Furthermore, continuous and discrete growth may occur
together in the form of hairpin structures growing between successive mergers.

Putting aside questions about vortices extending across the entire layer, our un-
derstanding of the organization of hairpin vortices is also far from complete. For
example, a number of prominent models of coherent structures in wall turbulence
(Bakewell & Lumley 1967; Perry & Chong 1982; Perry, Henbest & Chong 1986) as-
sume that the hairpins are scattered randomly in streamwise and spanwise directions.
However, hairpin vortices could occur in groups with a definite spatial arrangement
within the group. Support for this view can be seen in the measurements of Bog-
ard & Tiederman (1986), Luchik & Tiederman (1987) and Tardu (1995), where the
near-wall burst process was observed to be typically made up of multiple Q2 events.
The average length of a low-speed streak associated with a hairpin vortex is about
two to three hundred wall units in low-Reynolds-number channel flow (Kim 1983).
This is far too short to explain the long streaks that are experimentally observed.
Both observations suggest that hairpins sometimes occur in organized groups (or
packets) and not always as randomly scattered individuals. However, the packets may
themselves be randomly distributed within the turbulent boundary layer.

Recent high-resolution velocity field measurements within the turbulent boundary
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layer using particle image velocimetry (Meinhart 1994; Meinhart & Adrian 1995;
Meinhart, Adrian & Tomkins 1999) have revealed that the boundary layer is thickly
populated with hairpin vortices, which are aligned one behind the other forming
coherent packets of hairpin vortices. These vortices were observed to pass low-speed
fluid from the downstream vortex to its upstream neighbour and so on over several
hairpin vortices to form near-wall low-speed streaks of length significantly longer
than the streamwise lengthscale of any single hairpin vortex. This convincingly ex-
plains the often observed very long near-wall low-speed streaks. It was observed in
these experiments that the outer envelope of the coherent packet of hairpin vortices
takes many different shapes. The often observed scenario is a primary hairpin vortex
followed by a sequence of younger hairpins on its upstream end. Also observed in
some of the flow fields is a sequence of smaller and possibly younger hairpins on
the downstream side of the primary hairpin, thus forming a tent-like hairpin packet.
At higher Reθ the hairpin packets were not limited to the near-wall region and their
envelopes were distinct from the outer edge of the boundary layer.

Earlier, Bandyopadhyay (1980), based on his experimental observations, presented a
phenomenological model of turbulent boundary layer consisting of groups of hairpins.
According to this model, the oldest member of the group is the biggest and is located
at the downstream end of the hairpin packet. The upstream hairpins are successively
younger and smaller and thus the envelope of the group of vortices is tilted upwards
in the downstream direction. Based on an estimate for the growth rate of the hairpin
vortices and their convective velocity, Bandyopadhyay (1980) predicted the tilt angle of
the hairpin packet to be approximately 18◦. Based on hydrogen bubble visualizations
in a turbulent boundary layer and the resulting bubble pattern in the near-wall region
below y+ = 100, Smith (1984) reported the pattern to be consistent with a group
of streamwise aligned hairpin vortices. Further, in experiments where the laminar
boundary layer is locally disturbed by a small hemispherical bump (Acarlar & Smith
1987a), it was observed that a continuous train of vortices was shed downstream
of the disturbance. Experiments were also conducted in a laminar boundary layer
with an impulsive injection of fluid normal to the boundary (Acarlar & Smith 1987b;
Haidari & Smith 1994). These experiments demonstrated the possibility of hairpin
vortices occurring in groups of fixed spatial arrangement.

Haidari & Smith (1994) have addressed the process of a single hairpin vortex,
generated by an initial impulsive injection of fluid, subsequently generating subsidiary
vortices to form a packet of hairpin vortices. They interpreted the hydrogen bubble
and dye flow visualization results to indicate the formation of new hairpins directly
behind and to the sides of the primary mature hairpin vortex, which was generated
by the initial injection of fluid. This process of initial hairpin formation from fluid
injection and subsequent generation of additional hairpins in a laminar boundary layer
was studied numerically by Singer & Joslin (1994). In an earlier experiment Acarlar
& Smith (1987a) followed the continuous generation of hairpin vortices in a laminar
boundary layer behind a hemispherical bump. Here, the bump acts to disturb the
flow continuously, resulting in the steady formation of a continuous stream of hairpin
vortices. Whereas in the case of an impulsive injection, only the primary hairpin
was generated by the injection and the subsequent hairpins were generated from the
interaction of the primary hairpin with the wall layer. Thus, unlike the hemispherical
bump, impulsive injection of fluid can be considered to address the natural formation
of hairpin packets more closely. In support of the above experimental observations,
Smith et al. (1991) offered an inviscid model to explain the generation of additional
hairpins from a single mature hairpin vortex.
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Although the above studies have been limited to laminar boundary layers, it seems
reasonable to expect that this mechanism is active even in the turbulent regime. This
process of hairpin packet formation then needs to be understood in the context of a
turbulent boundary layer. Flow visualizations and PIV measurements have provided
convincing evidence for the development of a single hairpin into a hairpin packet, but
our understanding of the mechanistic details of this process is incomplete. Inviscid
models, while they are adequate for describing inviscid processes such as vortex
stretching and tilting, do not account for viscous processes such as vortex breakup
and vortex reconnection, and therefore do not provide a complete picture.

Recently, using direct numerical simulation of the Navier–Stokes equations, Zhou,
Adrian & Balachandar (1996) considered the evolution of a hairpin vortex in a
unidirectional mean flow obtained from the low-Reynolds-number turbulent channel
flow of Kim, Moin & Moser (1987). The process of autogeneration of new hairpin
vortices from a single initial hairpin leading to a hairpin packet was demonstrated.
A significant difference between this and the previous efforts is that the initial vortex
structure was not generated by a surface mounted disturbance or impulsive injection
of fluid. The initial flow structure was a viscous hairpin-like vortex structure extracted
from the full two-point correlation tensor of the Reτ = 180 channel flow database
(Kim et al. 1987) using the linear stochastic estimation procedure (cf. Adrian 1996).
By virtue of being extracted from the correlation tensor, the initial structure has
lengthscales, shape and vorticity consistent with the eddies that occur in the fully
turbulent channel flow. Studying the evolution of this initial vortex structure in a
clean turbulent mean flow environment (i.e. without the complications arising from
the presence of other eddies) made it possible to visualize the complex evolution of
the initial vortex structure and the subsequent autogeneration of new hairpin vortices.

Here, we extend the previous study, and address in detail the mechanisms re-
sponsible for the autogeneration of hairpin vortices. While several aspects of this
investigation are similar to the model of Smith et al. (1991), the present results will be
based on the full viscous solution of the Navier–Stokes equations that began with an
estimate of the single vortex structure, which was obtained from the turbulent chan-
nel flow DNS database, superposed on a clean unidirectional turbulent mean flow.
Particular attention will be paid towards accurately following the self- and mutual-
induction and vortex reconnection processes. It is observed that while stronger initial
vortices result in the formation of a hairpin packet, weaker initial vortical structures,
which live long and maintain their integrity, do not participate in the autogeneration
of additional hairpins. Here, criteria for the generation of new hairpins, in terms of
the strength and location of the initial hairpin will also be formulated. It is also
observed that in addition to the sequence of new hairpins generated on the upstream
side, hairpins are also generated on the downstream side of the initial vortex. The
characteristic shape of the resulting hairpin packet, its size and spatial dimensions
will also be discussed. The instantaneous velocity field corresponding to the hairpin
packet will be extracted on a longitudinal vertical plane passing through the centre
of the hairpin heads in order to illustrate the striking similarity to the experimental
PIV measurements of Meinhart et al. 1999).

In addition to the generation of new hairpins upstream and downstream of the
primary hairpin vortex, new quasi-streamwise vortices are also observed primarily on
the outboard side of the hairpin vortex legs. The detailed mechanism responsible for
their formation will be explored and compared with those proposed by Brooke &
Hanratty (1993) and Benard, Thomas & Handler (1993). The effect of asymmetry
on the evolution of the vortical structures will also be explored. Finally, the present
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results will clearly establish the causes and effects and provide a mechanistic picture
of the autogeneration process leading to the natural formation of hairpin packets.

The rest of the paper is organized as follows. In § 2, the extraction of the initial
structure using stochastic estimation methodology will be discussed first; followed by
a brief discussion of the numerical simulation and the vortex identification method-
ology. Section 3 is broken into ten subsections and the various aspects of the results
obtained are presented. The development of the initial structure into a hairpin packet
is addressed in §§ 3.1 to 3.5. The growth and threshold behaviour for the autore-
generation process are discussed in § 3.6, followed by comparison of the computed
vortical structure with the experimental measurements in § 3.7. Section 3.8 covers the
generation of additional quasi-streamwise vortices and in § 3.9 the convective velocity
of the hairpin packet is presented. The effect of asymmetry on the evolution of hairpin
structures is addressed in § 3.10. Finally, in § 4 summary and conclusions are provided.

2. Methodology
2.1. Linear stochastic estimation

The initial vortical structure whose evolution will be followed in detail is obtained from
the linear stochastic estimation (LSE) procedure applied to the Reτ=180 turbulent-
channel-flow two-point correlation database (Kim et al. 1987). The extraction of
coherent structures in turbulent flows by stochastic estimation has been discussed
extensively in the past (Adrian 1996). Here, the linear stochastic estimation procedure
is used to obtain the best linear approximation to the conditionally averaged flow
field 〈u′(x′)|u(x)〉 where u(x) is the velocity event specified at the point x upon which
the flow is conditioned. This best linear approximation can be evaluated in terms of
the unconditional two-point velocity correlation. In linear stochastic estimation, the
best linear estimate of the fluctuating flow field, û′i(x′), is written in terms of an event
vector uj(x) as

û′i(x
′) =

3∑
j=1

Lij(x
′, x)uj, (1)

where Lij are the linear estimation coefficients to be determined such that the
mean square error between the linear estimate, û′(x′), and the conditional aver-
age, 〈u′(x′)|u(x)〉, is minimized. This minimization yields a system of linear equations
known as the Yule–Walker equation (see Adrian 1996) for Lij as

3∑
j=1

〈ukuj〉Lij = 〈u′iuk〉. (2)

In the above equation 〈u′iuk〉 and 〈ukuj〉 are two-point correlation between the velocity
field and the event vector and among the components of the event vector, respectively.
The best linear estimate of the total flow field is

ũ′i(x
′) = Ui(y

′) + û′i(x
′), (3)

where Ui is the mean velocity of the turbulent flow.
The estimated field depends on the event vector. Because of the crucial role played

by second quadrant turbulent events, we consider the symmetric Q2 event vector
given by (u < 0, v > 0 and w = 0) specified at a single point within the channel.
The streamwise and wall normal velocity components of the event vector are chosen
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based on their contribution to mean Reynolds shear stress, uv. Moin, Adrian &
Kim (1987) lists the values of u = um and v = vm which maximize the product umvm
weighted by the probability density of its occurrence f(um, vm) and thereby maximize
the contribution to mean Reynolds shear stress.

The choice of a symmetric Q2 event vector results in a vortical structure that
resembles a near-wall quasi-streamwise vortex pair when the event is specified close
to the wall and resembles a hairpin vortex when the event is specified sufficiently far
away from the wall (Moin et al. 1987). In the present study, since it is of interest to
investigate in detail the evolution and dynamics of these near-wall vortical structures,
the wall normal location, y+

m , of the event vector will be varied from near the boundary
to the middle of the channel. Furthermore, it is recognized that the strength of the
initial structure can play an important role, especially in the nonlinear stages of the
evolution. Therefore, the symmetric event vector is specified as u = αum, v = αvm and
w = 0, where the multiplicative factor α, here referred to as the relative amplitude of
the initial structure, is varied from 0.25 to 3.0. The peak non-dimensional vorticity
of the initial structure with α = 1 is 32.6 and it can be compared to the peak non-
dimensional vorticity of 650 for the mean turbulent flow profile at the wall. Owing
to the linearity of the stochastic estimation procedure employed, the peak, as well as
the average vorticity of the initial vortical structure, scales with α.

In addition to symmetric initial structures, evolution of asymmetric structures is also
investigated. Here, an initial asymmetric vortical structure was obtained by specifying
an asymmetric event vector as u = αum, v = αvm and w 6= 0. The evolution of different
initial structures with varying magnitude of spanwise velocity is considered. Given a
sufficiently strong spanwise component of velocity in the event vector, the level of
asymmetry can be made significant.

2.2. Simulation of the dynamics

Once the initial vortex structure has been obtained from the linear stochastic es-
timation procedure, it is superposed on a turbulent mean flow profile evaluated
from the Reτ = 180 direct numerical simulation database (Kim et al. 1987) to form
the initial flow field whose time evolution is under investigation. Here, this initial
flow field is evolved in time by solving the Navier–Stokes equation along with the
incompressibility condition written in non-dimensional form as shown below:

∇ · u = 0, (4a)

∂u

∂t
+ (u · ∇)u = −∇p+

1

Reτ
∇ · ∇u. (4b)

In the above equation, the channel half-height h is used as the lengthscale. Wall
friction velocity uτ ≡ (ν(∂u/∂y)|y=±h)1/2 is used as the velocity scale, the characteristic
pressure and time scales are ρu2

τ and h/uτ, respectively. This scaling results in the
only non-dimensional parameter of Reynolds number based on friction velocity,
Reτ = uτh/ν.

The present simulations were performed at a Reynolds number of Reτ = 180.
The simulations employ periodic boundary conditions along the streamwise (x) and
spanwise (z) directions. The sizes of the computational domains along these directions
in non-dimensional units are 4π and 4

3
π, respectively. See figure 1 for a schematic

of the computational domain and coordinate definition. The periodic directions are
discretized by a uniformly spaced grid and Fourier expansions are used as part of the
spectral collocation methodology. The wall normal direction (y) is non-periodic and
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Figure 1. Schematic of the computational domain (x, streamwise direction; y, wall normal direc-
tion; z, spanwise direction). In viscous wall units the size of the computational box is given by
4πh+ × 2h+ × 4

3
πh+ = 2262× 360× 754.

a Chebyshev expansion is used along this direction with Gauss–Lobatto points for
spatial discretization. A typical resolution of 96 × 97 × 96 grid points along the x-,
y- and z-directions is used in most of the simulations to be reported, which results
in a uniform grid spacing of 23.56 and 7.85 viscous wall units along the streamwise
(x) and spanwise (z) directions, respectively. Along the wall normal direction, the
grid spacing in viscous wall units varies from 0.096 close to the walls to 5.96 near
the centre of the channel. The sufficiency of grid resolution has been verified by
comparing the results with those obtained for a few cases on a finer grid resolution
of 128× 129× 128 points.

Here, we employ the operator or time-splitting technique for the decoupling of
the pressure computations in the time advancement of the flow field. In brief, at
each timestep, first an intermediate velocity field is computed with only the advec-
tion and diffusion effects taken into account. This intermediate velocity field is not
divergence free. In the second step, an appropriate pressure is computed by solving
a Poisson equation for pressure, based on which a pressure correction is applied to
the intermediate velocity field to make it divergence free. Here, we employ a third-
order Runge–Kutta scheme for the advection term and an implicit Crank–Nicholson
scheme for the diffusion term. The pressure effect is considered to be fully implicit
in order to guarantee zero divergence at the end of the full timestep. The details of
the numerical procedure used in this channel-flow simulation are considered standard
(Kendall 1992) and will not be elaborated here.

2.3. Vortex identification

A key aspect of the current study is the identification and tracking of vortical
structures: therefore, an accurate vortex extraction method is required. The conceptual
notion of a vortex usually refers to a tube-like structure with persistent and coherent
rotation about its spine. Although a universally accepted definition of vortex is still
lacking, Robinson, Kline & Spalart (1988) proposed the following description: “A
vortex exists when instantaneous streamlines mapped onto a plane normal to the
vortex core exhibit a roughly circular or spiral pattern, when viewed from a reference
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frame moving with the center of the vortex core.” This definition makes a clear
distinction between a vortex characterized as a structure with a certain topological
feature and other mathematically well-defined quantities such as vorticity, helicity,
etc. Unfortunately, this description itself requires a priori knowledge of the location
of the vortex core.

On the other hand, a number of techniques for the identification of vortices
have been proposed. These techniques employ the iso-surface of vorticity magnitude,
local clustering of vortex lines (Kim et al. 1987), elongated regions of low pressure
(Robinson et al. 1988), regions of complex eigenvalues of the velocity gradient tensor
(Chong, Perry & Cantwell 1990; Dallmann et al. 1991; Soria & Cantwell 1993), the
Hessian of pressure (Jeong & Hussain 1995) and the second invariant of the velocity
gradient tensor (Hunt, Wray & Moin 1988; Zhong, Huang & Adrian 1996b), as
possible candidates for vortex identification. All the above methods are powerful in
capturing some signatures of the vortex and have proved successful under certain
flow situations, but have their limitations.

Here, we follow Chong et al. (1990) in their general classification of the three-
dimensional velocity field around a critical point. The local velocity field around a
point denoted by the position vector r can be expressed to linear order as

u(r + δr) = u(r) + Dδr + O(||δr||2), (5)

where D = ∇u is the velocity gradient tensor. Its characteristic equation is given by

λ3 + Pλ2 + Qλ+ R = 0, (6)

where P = −tr(D) = −div u, is an invariant of the velocity gradient tensor, which
is identically zero for incompressible flows. The other two invariants of D are Q =
1
2

[
P 2 − tr(DD)

]
, and R = 1

3

[−P 3 + 3PQ− tr(DDD)
]

= −det (D). The discriminant
for this characteristic equation is

∆ ≡ ( 1
2
R̃
)2

+
(

1
3
Q̃
)3
, (7)

where R̃ ≡ R + 2
27
P 3 − 1

3
PQ and Q̃ ≡ Q− 1

3
P 2. The velocity gradient tensor D has a

real eigenvalue and a pair of conjugated complex eigenvalues when the discriminant
∆ is positive. Based on the above classification, a number of vortex identification
methods have been suggested. Chong et al. (1990) proposed the use of the region
where an eigenvalue pair is complex to represent a vortex. In practice, it was necessary
to combine this methodology with the concentration of vorticity magnitude to obtain
a reasonable shape for the vortex.

A similar approach has been proposed by Dallmann et al. (1991). Hunt et al.
(1988) indicated that the second invariant (Q) of the velocity gradient tensor is a
quantity that measures the dominance of vorticity over strain and proposed that it
could be used as a criterion to identify vortices in two-dimensional turbulent flows.
By comparing results obtained from different combinations of the invariants of the
velocity gradient tensor, Zhong et al. (1996) suggested using contours of the second
invariant, in the region where the tensor has complex eigenvalue, to visualize vortices.

In the present study, we prefer to use the imaginary part of the complex eigenvalue
of the velocity gradient tensor to visualize vortices. This idea is based on the fact that
the velocity gradient tensor D in Cartesian coordinates can be decomposed as,

D ≡ [dij] = [νr νcr νci]

 λr
λcr λci
−λci λcr

 [νr νcr νci]
−1, (8)
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vr

vcr

vci

Figure 2. The local streamline pattern with the eigenvectors of the velocity gradient tensor in the
neighbourhood of a vortex core.

where λr is the real eigenvalue with a corresponding eigenvector vr , and λcr ± λcii are
the conjugate pair of the complex eigenvalues with complex eigenvectors vcr ± vcii.
In a local (curvilinear) coordinate (y1, y2, y3) system defined by the three vectors
{vr, vcr, vci}, the local streamlines can then be expressed as

y1(t) = Cr exp λrt, (9a)

y2(t) = exp λcrt[C
(1)
c cos(λcit) + C (2)

c sin(λcit)], (9b)

y2(t) = exp λcrt
[
C (2)
c cos(λcit)− C (1)

c sin(λcit)
]
, (9c)

where Cr, C
(1)
c , and C (2)

c are constants. Therefore, as shown in figure 2, the local flow
is either stretched or compressed along the axis vr , while on the plane spanned by the
vectors vcr and vci, the flow is swirling. Moreover, the strength of the local swirling
motion is quantified by λci, and thus, in the present report, the imaginary part of the
complex eigenvalue pair will be referred to as the local swirling strength of the vortex.

We have used the isosurfaces of the imaginary part of the eigenvalue to visualize
vortices in the present study. There are several advantages of this method. First,
this method is frame independent, eliminating the difficulty of choosing a proper
frame of reference. Secondly, only in regions of local circular or spiralling streamline
is the eigenvalue complex, so, this method automatically eliminates regions having
vorticity but no local spiralling motion, such as shear layers. In particular, the vortical
structures are extracted by plotting isosurfaces of λ2

ci equal to some threshold. The
term λ2

ci is analogous to enstrophy, and it is also dimensionally consistent with other
quantities such as Q used previously in the identification of vortices. Although, from
theoretical grounds, this threshold can be chosen to be zero, the surface with a
positive threshold (which can be set at a few percent of the maximum value) appears
significantly smoother, allowing easy interpretation. Figures 3(a), 3(b) and 3(c) show
a complex pattern of near-wall vortical structures visualized with three different
thresholds of 1.4%, 2.8% and 4.2% of the maximum value of 720. It can be seen
that the general topology of the visualized vortical structure remains nearly the same,
independent of the amplitude chosen for visualization. Characteristic information,
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x+
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(d )

x+

z+z+

Figure 3. Vortical structures identified by an iso-surface of (a) λ2
ci with 1.4% of maximum; (b) λ2

ci

with 2.8% of maximum; (c) λ2
ci with 4.2% of maximum; (d) λ2 = −10 (see Jeong & Hussain 1995).

such as the tilt angle of the vortex legs, tilt angle of the hairpin heads, spanwise
distance between the quasi-streamwise vortex legs, streamwise separation between the
different hairpin heads, remain invariant. However as the amplitude of visualization
is increased, the diameter and the length of the vortical structures can be observed to
decrease somewhat. Each one of the vortical structures to be presented in this paper
was visualized with a wide range of threshold amplitude using an automated three-
dimensional graphical tool. The choice of λ2

ci for presentation was made so that the
various vortical structures would be easily identifiable with minimal background noise,
and that the interpretations and final conclusions to be drawn were not sensitively
dependent on this choice of value.

Finally, it must also be pointed out that we have chosen this vortex identification
methodology over others mainly because it has been observed to yield a regular
and identifiable vortex structure in the present problem consistently under various
conditions. We have also used the vortex identification methods proposed by Zhong
et al. (1996) and Jeong & Hussain (1995). These methods yield qualitatively identical
and quantitatively similar results. For example, the near-wall vortices identified based
on the eigenvalues of the Hessian of pressure have been plotted in figure 3(d). By
comparing this with figures 3(a)–3(c), it is evident that both methods extract very



Coherent packets of hairpin vortices in channel flow 363

(a)

z+

Q2 Event

y+

x+

z+
180

90
0

90

180

270

180

360

540

y+

x+

z+
180

90
0

90

180

270

180

360

540

(b)

Figure 4. Formation of the primary hairpin vortex from an initial vortical structure extracted by
an event vector of strength α = 3.0 specified at y+

m = 49. The three-dimensional structures represent
iso-surfaces of λ2

ci equal to 10% of its maximum. Only a section of the entire computational
domain surrounding the structures is shown. In order to better visualize the hairpin, the y-direction
has been scaled up by a factor of two. The vector plots show in-plane perturbation velocities. The
(x, y)-cross-sections are located on the middle of the computational domain and they cut through the
hairpin head. (a) t+ = 0; the (z, y)-cross-section is at x+ = 342. (b) t+ = 27; the (z, y)-cross-sections
are at x+ = 324 and 450, respectively.

similar vortical structures. The conclusions to be drawn on the dynamics of the near-
wall vortical structures are not affected by the choice of methodology, and therefore
we have not pursued here a detailed comparison of the different vortex identification
methodologies.

3. Results
3.1. Initial structure and formation of primary hairpin

The development and dynamics of vortical structures resulting from symmetric Q2
events are considered first. The initial stochastically estimated structure evolves rapidly
into a hairpin-like vortical structure, and this process of initial development is rel-
atively independent of the initial strength (α) and initial location (y+

m ) of the event
vector. We have varied the initial strength from α = 0.25 to α = 3.0 and the initial
location from y+

m = 19.2 to y+
m = 103, and in each case the initial stochastically

estimated structure evolves into a qualitatively similar hairpin vortex during the early
phase of evolution. Of course, the strength of the hairpin vortex relative to the mean
flow depends on both α and y+

m , and therefore these two parameters control the
subsequent development of the hairpin structure. In this section, we will concentrate
on the character of the initial structure and its rapid development into a hairpin
vortex, which will be referred to as the primary hairpin vortex (PHV).

A typical velocity field determined by LSE given a Q2 event contains a pair
of inclined counter-rotating quasi-streamwise vortices located on either side of the
given event vector, such that fluid is pumped up and backwards (u < 0 and v > 0)
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between the streamwise vortices. Figure 4(a) shows the tilted streamwise vortex pair
associated with an initial Q2 event vector u = [8.16, 3.54, 0.0] corresponding to α = 3.0
specified at y+

m = 49.6. Owing to the linear nature of the estimation procedure, the
entire velocity field of the initial structure simply scales linearly with α. The vortex
identification method used in figure 4(a) is the isosurface of λ2

ci equal to 57 (8% of
the maximum 715). Plotted in this figure are two velocity vector plots: the first on an
(x, y)-plane passing between the two legs of the inclined vortex and the second on a
(y, z)-plane cutting through the two legs of the vortical structure. Also shown in the
(y, z)-plane are the shaded contours of λ2

ci to better illustrate the location of vortex
legs above the wall. The vector plots show perturbation in-plane velocity components,
i.e. the mean turbulent streamwise velocity has been subtracted. The strong upward
pumping of the fluid between the two legs of the vortex structure and its Q2 nature
can be clearly observed in these vector plots.

The quasi-streamwise vortices are about 200 viscous wall units long in the stream-
wise direction and their ends lie at y+ = 12 at the upstream end and at y+ = 65 at the
downstream end, giving them an approximate average inclination of about 15◦ with
respect to the horizontal direction. A closer look reveals that the upstream section
of the quasi-streamwise vortices of about 140 viscous wall units length has a shallow
inclination of only about 8◦, while the downstream end of about 60 viscous wall
units has a somewhat steeper inclination of about 25◦ (for a schematic of the side
view see figure 14(a)). These, as well as all other geometric data to be reported, are
based on an algorithm that extracts the backbone of the vortical structures. Along
the spanwise direction, the centres of the streamwise vortex pair are separated by
about 40 viscous wall units near the downstream end and by about 100 viscous wall
units near the upstream end, thus giving the vortex pair a characteristic Λ shape. The
average inclination of the initial structure decreases (or increases) as the y-location of
the event vector is lowered (or raised), but the spanwise separation at the upstream
end remains at about 100 viscous wall units approximately independent of y+

m . This
is consistent with the accepted mean low-speed streak spacing of about 100 viscous
wall units in the near-wall region.

In figure 4(a), the two streamwise vortices can be seen to be connected at the
downstream end by a narrow bridge. Along the vortices, the peak vorticity component
normal to the spanwise direction (or the quasi-streamwise component of vorticity)
occurs near this bridge. The non-dimensional value of the streamwise and wall normal
vorticity components (non-dimensionalized by uτ/h) at this location of maximum
strength are approximately 42 and 51.5, corresponding to a vortex vector angle of
about 50◦. This is significantly larger than the local inclination of the vortical structure
of 25◦. This observation is true over almost the entire length of the quasi-streamwise
vortex. Bernard et al. (1993) have also observed that the local vorticity vector is more
inclined than the vortex structure itself in their DNS result of channel flow. This
suggests a possible drawback of vortex identification based on vortex lines. This point
has also been addressed by Robinson (1991, 1993). A detailed local investigation
reveals that this narrow bridge is primarily made up of spanwise vorticity whose
maximum magnitude is approximately 35 in non-dimensional units. The location of
the spanwise bridge is slightly upstream of the downstream tip of the quasi-streamwise
vortices. In other words, the quasi-streamwise vortices extend slightly beyond their
spanwise bridge. This feature of the initial vortical structure will later be shown to
play an important role in the generation of new downstream vortical structures. The
spanwise bridge becomes stronger as the location of the event vector, y+

m , increases
and the initial structure resembles more closely a hairpin vortex. For a detailed
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characterization of the initial structure corresponding to various y+
m locations, the

reader is referred to Kendall (1992) and Adrian, Moin & Moser (1987).
The initial structure shown in figure 4(a) quickly evolves into a hairpin-like vortex

as shown in figure 4(b) at a non-dimensional viscous time unit of t+ = 27. This figure,
like figure 4(a), shows only a section of the computational domain surrounding the
vortical structure. During this period the centre of the vortex structure moves 377
viscous wall units along the streamwise direction. Also shown in this figure are the
velocity vectors on one (x, y)-plane passing between the quasi-streamwise legs and
two (y, z)-planes cutting through the quasi-streamwise legs. The geometry of the
vortex resembles in appearance the instantaneous hairpin vortex structure observed
in experiments and computations (see Head & Bandyopadhay 1981; Robinson 1991;
Haidari & Smith 1994). In the perspective view, in addition to the hairpin vortex, a
pair of vortical tongues can be seen to stick out at the downstream end of the hairpin
vortex, which will be discussed below.

The development of this hairpin structure from its initial form shown in figure 4(a)
is through a series of distinct and characteristic events. First, the quasi-streamwise
vortices lift away from the boundary, which can be explained as the effect of induced
velocity of one vortex leg on the other in accordance to the Biot–Savart law. Since
the spanwise distance between the quasi-streamwise vortex pair is shorter near the
downstream end, the mutual induction is stronger there, and therefore the downstream
end of the vortex pair lifts up more rapidly than the upstream end. This lift-up of
the downstream portion is particularly strong where the quasi-streamwise vortices
are connected by the narrow spanwise bridge, since there the local vortex strength
is at its maximum and the spanwise separation is at its minimum. Furthermore, the
lift-up process is somewhat mitigated at the upstream end by the strong stretching
due to the shear associated with the mean flow gradient, which is most active near
the boundaries.

The resulting intermediate structure is curved upwards with the vortex tilt towards
the vertical direction increasing downstream from the upstream end. This vortical
structure (shown in figure 4b) can be reasonably approximated to be made up of two
segments: an upstream section of length 125 viscous wall units at an inclination of
approximately 17◦ to the horizontal; and a downstream section of 25 viscous units
in streamwise extent with a steep inclination of approximately 75◦. Thus, the total
streamwise extent of the vortical structure at t+ = 27 has decreased to approximately
150 viscous wall units. During this period the length of the vortical structure, along
its backbone, has slightly increased, but owing to the steep 75◦ inclination of the
hairpin structure near its head, the streamwise extent has decreased. This curling-up
of the initial quasi-streamwise vortices into a hairpin structure is due to the competing
effects of self-induced velocity of the vortical structure on itself and the shear induced
stretching due to the background mean turbulent profile. This curl-up process can be
followed in the side view of the channel shown in figure 5. In figure 5(a), the shaded
region is the side view of the three-dimensional vortical structure identified by an
isosurface of λ2

ci equal to 8% of the maximum value at t+ = 9. To help visualize these
vortical structures, their backbones are sketched in the figure as a thick dark line.
Even at this early time during the formation of the hairpin vortex, the beginning of
the curl-up can be identified. Also, the side view of the downstream vortex tongues,
which extend almost parallel to the x-axis, can be seen.

The quasi-streamwise vortices pump fluid up and back, away from the boundary
in between them, owing to their Q2 nature. This induced back flow encounters the
mean flow and forms a shear layer, which is most visible in the vertical plane passing
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Figure 5. Side view of vortex structure identified by λ2
ci. Also identified is the corresponding shear

layer in terms of contours of (−ωz) on the (x, y) symmetry plane: (a) t+ = 9; (b) t+ = 18; (c)
t+ = 27. The initial condition is the same as in figure 4.

between the quasi-streamwise vortex pair. Therefore, also plotted in figure 5 are
contours of spanwise vorticity on the (x, y)-midplane. A shear layer can be seen
to be located just above the vortex structure. The spanwise separation between the
quasi-streamwise vortex pair is at its minimum near the downstream end. This is also
the region where the quasi-streamwise vortices are at their peak strength. Therefore,
the shear layer is the most intense near the downstream end of the quasi-streamwise
vortices. Evolution of the vortical structure and the associated shear layer at t+ = 18
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is captured in the side view shown in figure 5(b). The quasi-streamwise vortices have
curled-up further, the vortical tongues have extended further along the downstream
direction and the shear layer has further intensified, particularly near the top of the
quasi-streamwise vortices. Local spanwise vorticity associated with the shear layer
quickly rolls up in this region and forms a compact spanwise vortex located between
the downstream end of the quasi-streamwise vortices. Very quickly, by t+ = 27, the
rolled-up spanwise vortex further intensifies and lifts the quasi-streamwise vortices
close to it. Viscous vortex connection occurs and the newly rolled-up spanwise vortex
connects with the quasi-streamwise vortices to form a hairpin-like vortex structure
which can be seen in figure 4(b). This process can also be seen in the (x, y)-projection
at t+ = 27 shown in figure 5(c). Clearly, the spanwise section of the hairpin vortex
head is associated with the rolled-up shear layer. The nearly horizontal section of the
vortical tongue grows further in the downstream direction.

At this stage, the length of the downstream pair of streamwise vortical tongues is
approximately 100 viscous wall units. Although the upstream and downstream ends
of the hairpin vortex are now at approximate elevations of 19 and 102 viscous wall
units, the upstream end of the hairpin vortex still maintains the characteristic tilt of
about 15◦. The nearly horizontal downstream vortex pair has a very weak upward
tilt of a few degrees, and it is at an approximate elevation of about 70 viscous wall
units from the bottom boundary. The spanwise separation between the legs of the
hairpin vortex is about 100 viscous wall units near its upstream end, and it is about
40 viscous wall units near the downstream vortical tongues.

This evolution of the initial structure into a hairpin vortex is qualitatively indepen-
dent of the initial amplitude or the initial location of the event vector. As the strength
of the initial event vector (α) is changed, the initial structure always rolls-up into a
hairpin vortex, but its strength and accordingly its subsequent evolution differs. As
the initial location of the event vector is changed, the main effect is on the length
of the resulting hairpin vortex along the streamwise direction, which changes some-
what owing to changes in the delicate balance between the curl-up process due to
self-induction and streamwise stretching due to the mean shear, with distance from
the wall. Nevertheless the formation process of the primary hairpin vortex remains
the same qualitatively. This formation process for a different initial structure with
an event vector of slightly lower strength α = 2.0, given by ui = [7.78, 1.78, 0.0], and
located closer to the wall at y+

m = 30.3 is shown in figures 6(a) to 6(c), corresponding
to time instances t+ = 54, 72 and 90. The lift-up of the quasi-streamwise vortices,
formation of the shear layer, its roll-up into a spanwise vortex which bridges the
two quasi-streamwise legs, and the viscous vortex reconnection to form the hairpin
vortex, all take place in this case as well, as is evident from the three frames of figure
6. In particular, the manner in which the downstream pair of vortical tongues are
connected to the hairpin vortex can be clearly seen in this case. Their relation can
also be better observed in side view, shown in figure 6(d) at t+ = 90. Owing to the
lower initial strength of the vortical structure and its initial proximity to the wall, the
formation of the primary hairpin vortex is somewhat slower than the previous case
shown in figures 4 and 5. Also in figure 6, the quasi-streamwise legs of the hairpin
structure can be observed to be significantly longer, because of the relative dominance
of the mean shear over self-induction in this case.

The presence of a pair of nearly horizontal downstream vortical extensions to the
hairpin vortex seen in the above two cases is unexplained, since such vortical structures
have not been reported in the past in the context of turbulent boundary layers. It
must first be pointed out that these vortical structures were observed in all other
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Figure 6. Formation of a primary hairpin-like vortex from an initial vortex structure extracted by
an event vector of strength α = 2.0 specified at y+

m = 30.3. The three-dimensional structures are
identified by iso-surfaces of λ2

ci equal to 10% of its maximum at (a) t+ = 54; (b) t∗ = 72; (c) t∗ = 90;
(d) the side view at t∗ = 90.

cases considered in this study as well. The origin of these structures can be traced
back to the initial flow field obtained from stochastic estimation. In figure 4(a), they
can be observed as the tiny downstream extension in the quasi-streamwise vortices
beyond the point where they appear to be bridged. While the upstream portion of
the initial quasi-streamwise vortices along with the spanwise bridge grows into the
hairpin vortex, the small downstream section develops into the long near-horizontal
downstream vortical extensions.

This dependence of the vortical tongues on a small feature of the initial condition
raises the following question: are these vortical tongues a characteristic feature of the
hairpin vortices seen in wall-bounded turbulent flows, or are they artifacts of the initial
condition? The initial structures employed in the present study are not arbitrary; they
were obtained from the two-point correlation of the turbulent channel flow DNS
database, and they represent the best linear approximation to the conditionally
averaged flow field consistent with the event vector. Thus, there is reason to believe
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that the downstream extensions observed in the initial structure and their subsequent
growth into the near-horizontal vortical tongues are characteristic features of wall
turbulence. In further support, in the subsequent sections it will be pointed out
that as the primary hairpin vortex generates new secondary and tertiary hairpin
vortices, vortical tongues are observed to form downstream of these naturally formed
hairpin vortices as well. Furthermore, experimental support for the presence of such
nearly horizontal downstream extensions to the hairpin vortices comes from the dye
visualizations on the generation and downstream evolution of hairpin vortices by
Haidari & Smith (1994). Their experimental observations clearly suggest the presence
of nearly horizontal downstream vortical extension, in addition to the standard
hairpin structure. The flow visualizations shown in their figures 1, 4 and 8 very closely
resemble the side view of the vortical structures shown in figures 5(c) and 6(d). Thus,
with reasonable confidence, it can be anticipated that these downstream vortical
extensions are a realistic part of near-wall turbulent structures. The importance
of these downstream vortical extensions in the generation of new hairpin vortices
downstream of the primary hairpin vortex will be explored below.

3.2. Formation of Ω-shaped vortex

In this section, we will follow the evolution of the primary hairpin vortex shown in
figure 4. The primary hairpin vortex, once formed, quickly evolves into the character-
istic Ω-shaped vortex shown in figures 7(a), 7(b) and 7(c), corresponding to t+ = 36,
45 and 54, respectively. The head of the vortex continues to lift and tilt upwards into
an almost vertical orientation by t+ = 54. In doing so, it also grows wider in the
spanwise direction. At t+ = 54, the primary vortex structure can be approximately
divided into three segments, as can be seen in the side view shown in figure 7(d). The
upstream segment is the closest to the bottom boundary and is tilted up from y+ = 15
at its upstream end to y+ = 45. This segment is approximately 180 viscous wall units
long and has an inclination of approximately 8◦. The spanwise spacing between the
vortex legs at the upstream end is approximately 100 viscous wall units.

The middle section of the vortex structure has a very weak negative tilt of ap-
proximately −2◦. This section is approximately 140 viscous wall units long and is
approximately located at y+ = 45. The third section is the head of the vortex struc-
ture, which is tilted approximately 75◦ to the horizontal. Because of this near-vertical
orientation, the streamwise extent of this section is only 30 viscous wall units. The
near-vertical orientation is due to the backward self-induced motion of the upper
portion of the head coupled with little or no forward stretching from the mean shear,
which is small in the neighbourhood of the head. The spanwise separation between
the the two legs is at its minimum of 30 viscous units where the upstream and middle
sections of the vortex structure connect. The spanwise separation is about 40 viscous
units where the head connects with the middle section. Owing to the characteristic
Ω-shape, the spanwise size of the head is approximately 100 viscous wall units.

Similar Ω-shaped vortices have been reported earlier based on inviscid vortex line
calculations (Moin, Leonard & Kim 1986; Kim 1987; Kempka 1988; Hon & Walker
1991). The inviscid simulations of the hairpin-like vortex filaments have shown that
the evolution of the vortex into an Ω-shape is due to self-induction. However, unlike
the inviscid computations, the present viscous simulations show no tendency for the
head of the Ω-shaped vortex to pinch off to form a ring vortex. Kim (1987) computed
the evolution of an eddy whose initial field was found by conditional averaging
conditioned upon a Q2 event, not unlike the present case. Our results agree well with
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Figure 7. Development of the Ω-shaped head following the formation of the primary hairpin vortex
shown in figure 4(b). Plotted are the iso-surfaces of λ2

ci equal to 10% of the maximum at (a) t+ = 36;
(b) t+ = 45; (c) t+ = 54; (d) the side view at t+ = 54.

his. The general agreement of all these calculations indicates that the formation of
the Ω-shape is not sensitive to the details of the initial field.

3.3. Vortex dynamical considerations

The primary motive in describing near-wall turbulence in terms of vortical structures
is to be able to follow their dynamics and delineate causes and effects, based on simple
vortex dynamics. Here, we will attempt to explain the details of the formation of the
Ω-shaped vortex and its subsequent deformation and evolution based on Biot-Savart
law, which for an incompressible flow can be written as:

u(x) = − 1

4π

∫∫∫
(x− x′)× ω(x′)
|x− x′|3 dV (x′) + potential flow. (10)

The first term on the right-hand side provides an expression for the velocity u(x)



Coherent packets of hairpin vortices in channel flow 371

(b) (d )

(c)(a)

y

B

A

x

B ′

D ′

z

x

z

D

y

y

C

x

C ′

z

y

E

x

z

Figure 8. Schematic diagrams of the self-induced motion of a hairpin vortex. (a) Lifting and
broadening of the head; (b) formation of the Ω-shaped head and the subsequent downward motion;
(c) formation of kinks in the hairpin vortex legs and their approach towards each other; (d) lifting
of the kinks.

in terms of the vorticity distribution ω(x′). With an assumption that the vorticity
distribution is only due to an isolated, thin, and elongated vortex tube, the integration
can be divided into a local contribution and a non-local contribution coming from
|x−x′| � σ, where σ is the thickness of the vortex core. The local effect to the leading
order is (Batchelor 1967)

KC

Γ

4π

(
∂x

∂s
× ∂2x

∂s2

)
, (11)

where s is the arclength along the space curve C that defines the spine of the vortex
tube, Γ is the local circulation of the vortex and Kc is a constant whose value depends
on the distribution of vorticity within the vortex core. Here (∂x/∂s)× (∂2x/∂s2) = κb,
where κ and b are local curvature and local bi-normal vector of curve C , respectively.
Thus, when local curvature is large, the self-induced velocity of the vortex tube is
dominated by the local effect, and to leading order the induced motion is in the local
bi-normal direction, and it is proportional to both the vortex strength and the local
curvature.

A schematic of the formation of the Ω-shaped vortex and its subsequent evolution
is shown in figures 8(a) to 8(d). The initial hairpin vortex in figure 8(a) consists of
a pair of quasi-streamwise vortices connected at the downstream end by the hairpin
head. As pointed out in the previous sections, while the upstream end of the hairpin



372 J. Zhou, R. J. Adrian, S. Balachandar and T. M. Kendall

vortex is only weakly inclined, the downstream section is tilted up significantly. This
results in strong local curvature, primarily in the (x, y)-plane, along the two quasi-
streamwise legs at points marked B and B′ in figure 8(a). The proper direction of
the induced motion due to local curvature is given by the cross-product of the local
vorticity vector with the unit vector along the local radius of curvature. The resulting
self-induced motion is in the spanwise direction, and it moves the two legs of the
hairpin vortex apart, as indicated by the arrows in figure 8(a). This spanwise motion
is strong where the vortex is strong and its local curvature is large. The bottom
wall, whose effect can be accounted for through an image hairpin vortex, somewhat
mitigates this spanwise motion. The effect of the image vortex is to bring the two legs
close together. Since the effect of the image vortex is stronger closer to the boundary,
the self-induced spanwise spreading reaches its peak away from the boundary, giving
the hairpin vortex head its characteristic Ω-shape, as shown in figure 8(b).

The hairpin is strongly curved at its head (marked A in figure 8a). Here, the vorticity
is directed along the −z-direction and the unit vector along the radius of curvature
lies on the (x, y)-plane and its angle to the x-axis varies from about −160◦ to −100◦
as the hairpin vortex tilts up. The self-induced motion is therefore pointed up and
backward, resulting in further curl-up of the hairpin vortex. In the initial stages, when
the downstream section of the quasi-streamwise vortices and their spanwise bridge
are inclined at a shallow angle, the induced motion is dominantly to lift up the vortex
head. In contrast, towards the later stages, when the hairpin vortex is tilted-up to
a near-vertical position, the self-induced motion moves the vortex head backward.
Of course, the streamwise stretching of the vortex structure due to the background
turbulent mean flow must also be taken into consideration. The effect is most active
close to the top and bottom boundaries and progressively decreases towards the
interior of the channel.

3.4. Generation of secondary and tertiary vortices

The above arguments based on vortex curvature and induced motion can be continued
to further follow the evolution of the Ω vortex. As a result of the spanwise broadening
of the hairpin vortex into the Ω shape, the primary curvature of the vortex structure
in the neck region, where the head connects with the legs (marked C and C ′ in
figure 8b), is in the (x, z)-plane. The vorticity and the normal vectors are locally such
that the local self-induced motion at both these points is directed downwards and
the neck region moves towards the wall. While the neck region moves down owing
to local curvature effect, the rest of the quasi-streamwise vortex legs continues to
lift up owing to mutual induction. A diagram of the resulting structure is shown in
figure 8(c). As described in figure 7(d), the vortex structure is now made up of three
segments: an upstream segment with a small upward tilt; a middle segment with a
very weak negative tilt; and a near-vertical Ω-shaped vortex head. As a result, the
quasi-streamwise vortex legs acquire a curvature primarily in the (x, y)-plane, where
the upstream and middle segments meet (these points are marked D and D′ figure 8c).
However, since now the curvature is concave downwards, the resulting self-induced
spanwise motion pushes the two streamwise vortex legs closer together, particularly
where the curvature in the (x, y)-plane is the largest, as shown by arrows in figure
8(c). In turn, the approach of the streamwise legs toward each other increases their
mutual induction and results in strong local lift-up. This further increases the local
(x, y)-curvature and the self-induced motion of the vortices towards each other. This
feedback process evolves rapidly and results in a kink (or a rapid change in the
slope) in the long legs of the vortex structure near the junction of the upstream and
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Figure 9. The generation of a secondary hairpin vortex follows the formation of the Ω-shaped
head of the primary hairpin vortex shown in figure 7(c). The hairpin structures are identified with
iso-surfaces of λ2
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primary hairpin vortex, SHV, secondary hairpin vortex; SVA, spanwise vortex arch. Also plotted
are vector plots of perturbation velocity on selected (x, y) and (y, z)-planes. Again, only a section of
the entire computational domain surrounding the vortex structures is shown.

middle segments. This kink can be seen clearly at the points labelled E in the vortical
structure shown in figure 8(c).

The kink is very similar in nature to the rapid change in slope observed during
the formation of the primary hairpin vortex at the point where the near-horizontal
downstream vortical tongues attach to the newly forming primary hairpin vortex.
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The upstream segment plays the role of tilted Λ-shaped quasi-streamwise legs and
the middle segment resembles the downstream vortical tongues. Thus, the subsequent
evolution of the quasi-streamwise vortex pair near the kink follows along the same
process as the one described in § 3.1 concerning the formation of the primary hairpin.
It results in the generation of a secondary hairpin structure. The strong Q2 pumping
of the near-wall fluid encounters the high-speed free-stream fluid to form an intense
shear layer. This shear layer is located slightly above the vortex legs, and it is
concentrated along the (x, y)-midplane passing between the vortex legs. The shear
layer is particularly strong near the kink, since at the kink the vortex legs are at their
closest approach. This part of the shear layer quickly rolls up into a compact spanwise
vortex structure just above the kink, which can be clearly seen in figures 9(b) and
9(c) (marked A), corresponding to t+ = 72 and 81. The spanwise vortex aids in the
further lift-up of the streamwise vortex pair near the kink and in the sharpening of
the kink. Quickly, as can be seen in figure 9(d) at t+ = 117, the two long streamwise
vortex legs break-off near the kink, and the upstream pair viscously connects with
the rolled-up spanwise vortex to form the secondary hairpin vortex (SHV), which is
detached from the legs of the primary hairpin vortex.

At this stage, the secondary hairpin vortex very much resembles the primary
hairpin vortex at its initial stage of formation. The upstream sections of the vortex
legs are about 140 viscous wall units long and have a shallow positive inclination of
about 8◦, while the downstream sections, which are about 50 viscous wall units long,
have a steeper inclination of about 40◦. Along the spanwise direction, the centres
of the streamwise vortex pair are separated by about 40 viscous wall units near the
downstream end and by about 100 viscous wall units near the upstream end, thus
giving the vortex pair a characteristic Λ-shape. The only significant difference between
the formation of the primary and secondary hairpins is that the upstream end of the
secondary vortex legs is at a higher elevation of y+ = 45, but its height still remains
comparable at 50 viscous wall units.

The primary hairpin vortex is fully grown and its head has reached the channel
centreline at y+ = 180 by t+ = 117. The head of the primary vortex has the
characteristic near-vertical tilt of about 75◦. The upstream end of the primary hairpin
vortex legs, as a result of the vortex break-up process, has a small negative tilt of
about −5◦. These legs are about 190 viscous wall units in length and are at an
elevation of about y+ = 45. The overall streamwise extent of the primary hairpin
vortex is about 330 viscous wall units, which is also approximately the streamwise
separation between the primary and secondary vortex heads. The corresponding
vertical separation between the two vortex heads is about 90 viscous wall units.
Thus, the line joining the head of the primary and secondary vortices, which roughly
characterizes the envelope of the vortical packet formed by the primary and secondary
vortices, has a characteristic slope of 15◦ (see the schematic in figure 14d).

This process can be followed still further in time and figure 10 shows the vortex
structure at a much later time of t+ = 297. Figures 10(a), 10(b) and 10(c) show this
complex vortex structure in three-dimensional perspective, side view, and top view,
respectively. At this time, the secondary vortex is also fully grown and it has given
way to the formation of a tertiary vortex. The formation of the tertiary vortex from
the legs of the secondary hairpin vortex follows along the same lines as the formation
of the secondary vortex from the legs of the primary hairpin vortex. It can be seen
that the heads of the three hairpin vortices are located at y+ = 90, 170 and 245.
Their streamwise separations are approximately the same at 450 viscous wall units.
Thus, the upstream envelope of the composite vortical packet makes an angle of 10◦.
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Figure 10. The sequence of vortices identified at t+ = 297 by the iso-surface of λ2
ci with 2%
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While the lengths of the primary and secondary vortices are slightly longer than 450
viscous wall units, at this stage the length of the tertiary hairpin vortex is only about
300 viscous units. It must be cautioned that at this time the head of the primary
vortex is past the channel centreline so that its location and its vertical orientation are
somewhat affected by the top of the channel. In the top view, the spanwise distance
between the quasi-streamwise legs of the hairpin vortices can be seen to decrease from
the primary to the secondary to the tertiary vortex. Also marked in this top view are
vertical lines marking the location of the five (y, z)-planes on which the corresponding
velocity vector plots are shown in figure 10(a).

3.5. Formation and development of downstream hairpin vortices

Apart from the primary, secondary and tertiary hairpin vortices, in figure 10, an
additional hairpin vortex downstream of the primary hairpin vortex can be clearly
observed. It is the result of the near-horizontal downstream vortical tongue seen
during the early development of the primary hairpin vortex (see figures 4 and 5).
This downstream hairpin vortex can be tracked back to as early as t+ = 45. During
the early period, the downstream vortical tongues develop rapidly into multiple
downstream hairpin vortices. Two such downstream hairpin vortices can be seen in
figures 7(b) and 7(c). A closer look at their formation process shows that the vortical
tongues seen in figures 4(b) and 5(c) first stretch in the streamwise direction, and
then tilt up to evolve into a hairpin vortex. This process of shear-layer roll-up and
vortex connection is identical to the process that forms the primary hairpin vortex,
but it happens on a much faster scale, owing to the close proximity and strong
influence of the primary hairpin vortex. The strong Q4 velocity induced downstream
of the primary hairpin vortex head interacts with the Q2 velocity induced by the
downstream vortical tongues to create an intense shear layer. The shear layer rapidly
rolls up and reconnects with the vortical tongues, resulting in the speedy formation
of the downstream hairpin vortex. Once formed, the first downstream hairpin vortex
rapidly evolves into a system of multiple downstream vortices. There is a brief window
of time (see figures 9a and 9b) during which three downstream hairpin vortices are
visible. The two downstream hairpins that are closer to the primary are relatively
weak and they subsequently merge back with the primary hairpin, leaving only one
downstream hairpin vortex visible in figure 10 at t+ = 297.

During the early stages of formation, the legs of the downstream hairpin vortices are
at an approximate elevation of about y+ = 80. At around t+ = 108, shown in figure
9(d), the length of the downstream hairpin vortex is about 100 viscous wall units,
which is also nearly the downstream separation between the heads of the primary and
downstream hairpin vortices. The head of the downstream hairpin vortex is located
at y+ = 155 and thus the downstream front of the envelope of the hairpin packet
makes an angle of about −17◦. At t+ = 297, the legs of the downstream hairpin
vortex have grown to 200 viscous wall units in length. The legs are also significantly
lifted away from the wall and are at an approximate elevation of y+ = 100. The
head of the downstream vortex is approximately 220 viscous wall units downstream
of the primary vortex head and is at an elevation of y+ = 215. Thus, the composite
vortical structure, while forming an angle of 10◦ upstream of the primary hairpin
vortex, forms an approximate angle of about −7◦ downstream of the primary vortex.

3.6. Growth rate and the threshold behaviour

It must be pointed out that the above scenario of primary hairpin vortex formation
and its subsequent evolution leading to the formation of secondary and tertiary hairpin
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of the event vector used to extract the initial vortical structures. A threshold behaviour in initial
strength for the formation of secondary hairpin vortices can be identified.

vortices is for the case of an initial vortex of strength, α = 3.0, located at y+
m = 49.6.

Whereas the initial structure evolves into an Ω-shaped primary vortex, irrespective of
its initial strength, α, and initial location, y+

m , the autogeneration of secondary and
tertiary vortices is quite sensitive to the amplitude. The autoregeneration process is
possible only in the case of strong initial structures. Figure 11 shows in the (α, y+

m )
space the various cases considered and those for which the vortex regeneration process
was observed. From this figure a threshold behaviour in the initial strength, α, for
the vortex regeneration process is evident. It also appears from this figure that the
threshold amplitude reaches a minimum for an initial location y+

m of around 30.
The presence of an optimum distance from the wall for the initial structure is not

entirely surprising. This can be explained on the basis of the delicate balance between
self- and mutual-induced motion of the quasi-streamwise vortex legs which tends to
lift-up and curl back the vortices and the influence of mean shear which stretches along
the streamwise direction and intensifies the vortices. Very close to the wall, viscous
effects are also important. The enhanced viscous effects result in an increase in the
threshold amplitude for initial vortices starting very close to the boundary. Whereas,
away from the wall, the induced motion is determined by the strength of the vortex
structure and streamwise stretching by the mean shear. With increasing distance from
the wall, the mean shear rapidly reduces, thereby decreasing the intensification of
the initial vortex structure by stretching. Thus, an initial hairpin vortex farther away
from the boundary needs to be of sufficiently higher strength to generate subsequent
hairpin vortices. The significant role played by the mean shear suggests that the
details of the hairpin regeneration process can be different in laminar and turbulent
boundary layers. For example, the threshold amplitude for regeneration, frequency of
regeneration and the size and shape of the resulting hairpins can be influenced by the
laminar or turbulent nature of the boundary layer and parameters such as Reynolds
number and streamwise pressure gradient. In this regard, it should be noted that the
background mean flow in the experiments by Haidari & Smith (1994) was a laminar
Blasius profile.

Haidari & Smith (1994) observed that with very weak impulsive injection no
hairpin vortex was formed. At moderate levels of injection, a hairpin vortex was
formed, which subsequently was observed to evolve downstream and generate new
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Figure 12. Growth rate of volume-averaged values: �, | − u′v′|; •, |ωx|; �, |ωy |; �, |ω′z |, and the
magnitude of perturbation vorticity ◦, |ω′| normalized by their initial values, for the initial structure
shown in figure 4(a). (a) α = 1.0; (b) α = 2.0; (c) α = 3.0. y+

m = 49.6.

hairpin vortices. Above a threshold, multiple hairpins were formed just as a result of
the injection process. In contrast, here the simulations always started with a single
hairpin-like vortical structure, whose initial strength was varied. Below a threshold
amplitude, no additional vortices were generated, but, above the threshold amplitude,
new hairpin vortices were observed to form. Thus, the threshold behaviour observed
here is of a different nature from the threshold behaviour considered by Haidari &
Smith (1994).

Evolution of the initial structure is followed in figures 12, where the volume
averaged magnitude of Reynolds shear stress, | − u′ν ′|, streamwise and wall normal
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averaged Reynolds shear stress, u′v′. The initial structure for this plot is that shown in figure 4(a).

vorticity, |ωx| and |ωy|, mean subtracted spanwise vorticity perturbation, |ω′z|, and
perturbation vorticity magnitude, |ω′| = (ω2

x + ω2
y + ω′2z )1/2, are plotted against time.

Three different cases of initial location y+
m = 29 and amplitude, α = 1.0, 2.0, and

3.0, respectively, are considered in figures 12(a), 12(b) and 12(c). Each quantity is
normalized by its initial volume average. In the low-amplitude case, α = 1.0, the
normalized Reynolds stress reaches a weak maximum at around t+ ≈ 80 which
corresponds approximately to the formation of the primary hairpin vortex structure.
The perturbation vorticity magnitude evolves on a longer timescale, and appears to
saturate around t+ ≈ 300. The vertical component of vorticity continues to increase
over time, which during the initial period was supported by the formation and growth
of the primary hairpin vortex. During the later stage (t+ > 225), when the primary
hairpin vortex has saturated, as shown by the perturbation vorticity magnitude, the
growth in the vertical component of vorticity is balanced by a corresponding decrease
in the streamwise component. This suggests a progressive tilting of the primary
vortex to a near-vertical orientation without much intensification. Subsequently, the
low-amplitude cases that are below the threshold exhibit a long and slow decay of
the primary vortex structure. No secondary and tertiary vortices are observed in these
cases. Nevertheless, even in these cases, the primary vortex, although weakening over
time, remains coherent for a long time.

For initial amplitudes higher than the threshold (figures 12(b) and 12(c)), the
evolution of the vortex structure in the beginning stages remains qualitatively the
same as the lower-amplitude case, resulting in the formation of the primary Ω-shaped
vortex. At sufficiently longer time, owing to the vortex regeneration process, the
perturbation vorticity magnitude continues to increase. A corresponding increase in
both the streamwise and wall normal components of vorticity can be observed. The
plot of the Reynolds shear stress also illustrates the ability of the stronger initial
vortical structure to increase and maintain a higher level of Reynolds stress through
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the self-sustained autogeneration process. Also indicated in the figure are approximate
times for the generation of secondary and tertiary hairpin vortices. Figure 13 shows
a carpet plot of instantaneous Reynolds shear stress averaged over horizontal planes
plotted as a function of t+ and y+. At the initial time, a single peak corresponding
to the quasi-streamwise vortices can be seen around y+ = 50. As the structure lifts
and forms the primary hairpin vortex, the elevation of the peak Reynolds stress also
increases. After t+ = 100, the distribution associated with the primary vortex evolves
more slowly, suggesting that the vortex has reached an equilibrium shape after a
rapid transient from the initial condition. At later times, the peak corresponding to
the primary can still be identified, although it has decreased in magnitude to about
0.04 and broadened a bit. A second peak in the Reynolds stress distribution can
be seen for t+ > 200, and this is associated with the secondary hairpin vortex. The
Reynolds stress contribution from the concentrated secondary hairpin vortex quickly
surpasses that of the somewhat diffused primary hairpin vortex.

3.7. Comparison with experimental results

A diagram illustrating the development of the initial vortex structure leading to the
formation of secondary, tertiary and downstream vortices is shown in figure 14, where
the five frames correspond approximately to times, t+ ∼= 0, 25, 50, 120, and 300,
respectively. The different vortical structures marked, PH, SH, TH, DH, and VT
correspond to primary hairpin, secondary hairpin, tertiary hairpin, downstream hair-
pin, and vortical tongue. Characteristic dimensions of the different hairpin structures
are marked in these schematics. A tendency towards self-similar development of the
hairpins can be observed. In particular, the shape and structure of the secondary
hairpin during its early development at t+ ∼= 120 approximately resembles the initial
state of the primary hairpin vortex. Their streamwise length is approximately 200 wall
units and the upstream and downstream ends of the hairpin are respectively tilted at
8◦ and 25◦ to the horizontal. Vertical location is somewhat different in the two cases,
possibly owing to the arbitrary location of the initial structure. This observation pro-
vides additional support to indicate that the stochastically estimated initial structures
used in the present study are successful in extracting the generic behaviour of hairpin
vortices.

At t+ ∼= 120 the primary hairpin is approximately 330 wall units downstream of
the secondary, which is also the approximate length of the primary hairpin. This
is somewhat larger than the experimental measurement of 100–150 wall units for
the average streamwise distance between successive hairpin heads (Acarlar & Smith
1987; Meinhart et al. 1999). In figure 14, the angle that a line connecting the head
of the primary and secondary vortices makes with the horizontal is about 15◦. This
compares well with the experimental observation of about 20◦ between vortex heads
by Brown & Thomas (1977) and Head & Bandyopadhyay (1981) in a turbulent
boundary layer and with an angle of 15◦ to 30◦ seen by Acarlar & Smith (1987b) in
a laminar boundary layer. Based on a convective velocity for the hairpin of about
80% of free-stream velocity, Bandyopadhyay (1980) provided an estimate of 18.4◦
for this angle. It must be cautioned that the hot-wire measurements of Brown &
Thomas (1977) and smoke visualization of Head & Bandyopadhyay (1981) extracted
the inclination of large outer scale structures that defines the interface between the
turbulent and non-turbulent regions of the boundary layer. The present result suggests
that this angle could remain the same in the near-wall region as well.

At a later time, corresponding to t+ ∼= 300, a sequence of self-similar hairpin
vortices can be seen, and they are separated by approximately 450 wall units along the
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Figure 14. The growth and development of the hairpin vortex pocket at (a) t+ ≈ 0; (b) t+ ≈ 25; (c)
t+ ≈ 50; (d) t+ ≈ 120; (e) t+ ≈ 300. Shown in this figure are the characteristic dimensions of the
different hairpin structures.

streamwise direction. This is still larger than the experimentally observed streamwise
separation between hairpin heads within a packet. It will be seen in § 3.10 that the
streamwise distance between successive hairpins within a packet significantly decreases
and compares favourably with experimental results as the asymmetry of the hairpins
about the spanwise midplane increases. This suggests that the increased streamwise
distance between the hairpins observed in the present computations is the result of
assumed spanwise symmetry.

The computed angle of 10◦ for the upstream envelope of the packet seems lower.
This quantitative discrepancy at later times is primarily due to the low-Reynolds-
number turbulent channel flow considered here versus the high-Reynolds-number
turbulent boundary layer considered by Bandyopadhyay (1980), Brown & Thomas
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(1977) and Head & Bandyopadhyay (1981). In the present computations, the head
of the primary hairpins rapidly rises and approaches the channel centreline. Owing
to negligible mean shear near the centreline, the hairpin head takes a near-vertical
orientation. In fact, at later times the hairpin head slightly crosses the centreline and
further lift-up is inhibited. This behaviour provides a reasonable explanation for the
shallow angle and large separation between hairpins observed at later times in the
computation.

Further comparisons can be made with earlier experimental observations. In the
side view, each individual hairpin is tilted up and the tilt angle varies from about 8◦
in the long quasi-streamwise legs to about 75◦ at the downstream end of the hairpin
head. In comparison, Haidari & Smith (1994) report the angle to vary from about
6◦ at the upstream portion of the vortex legs to about 67◦ near the vortex head. A
characteristic tilt of 45◦ is often quoted for hairpin heads (cf. Head & Bandyopadhyay
1981). From figure 14(d), it can be seen that with an approximate streamwise length
and wall normal height of 140 wall units, the average tilt of the primary hairpin head
is consistent with 45◦.

The plan view of the vortex structure (figure 10c) shows that the average spanwise
distance between the quasi-streamwise vortex legs is about 100 viscous wall units. The
spanwise separation for the primary hairpin legs is somewhat greater than 100 wall
units, but the separation decreases in the case of secondary, tertiary and downstream
hairpin vortices. This increase in spanwise separation of the legs with the age of the
hairpin is associated with the lift-up of the vortex legs. Close to the boundary, the
effect of the image vortices is to bring the vortex legs together and decrease their
spanwise separation. In many experiments, over a wide range of Reynolds numbers,
the mean spanwise spacing between low-speed steaks in the sublayer region has been
observed to be approximately 100 wall units (cf. Robinson 1991).

A velocity vector plot on a streamwise vertical (or x, y) plane located between the
quasi-streamwise legs and cutting through the heads of the hairpins at t+ = 297 is
shown in figure 15(a). A constant velocity of 80% of the centreline velocity has been
subtracted in this plot in order to correspond approximately to the frame of reference
moving with the hairpin heads. The heads of the primary, secondary, tertiary, and
downstream hairpins, marked by circles, are located approximately 240, 175, 90,
and 215 wall units away from the bottom boundary, respectively. A corresponding
velocity vector plot on a streamwise-wall normal plane obtained from high resolution
PIV measurement in a zero-pressure-gradient turbulent boundary layer at Reθ = 930
(Meinhart et al. 1999) is shown in figure 15(b). Here again, a constant velocity of 80%
of the free-stream velocity has been subtracted and the vortex heads are circled and
marked A, B, C and D. As pointed out earlier, the streamwise separation between
the hairpins is different between the computations and experiments; nevertheless, the
coherency of the hairpins and their organization into a hairpin packet is clear in both
cases. Even though, in the experimental measurement, it is hard to pinpoint which
are the primary, secondary, and downstream hairpins, the general tendency to form
additional vortices both upstream and downstream of a strong hairpin can be seen.

In both cases, a strong near-horizontal backflow that extends from the wall to
about y+ > 30 can be seen. The low-speed streak extends along the streamwise
direction over distances much longer than an individual hairpin. Such observations of
very long low-speed streaks very near the wall have previously been made by many
researchers (for example Kreplin & Ecklemann 1979; Morrison & Kronauer 1969).
Our results show that streaks can extend much higher. At low Reθ the streaks are low,
but at higher Reθ streaks as large as 1200y+ have been observed. From the present
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Figure 15. (a) Vector plot of velocity on the (x, y) symmetry plane at t+ = 288. A constant streamwise
velocity of 80% of centreline velocity has been subtracted. (b) Velocity vector plot on a stream-
wise–wall normal plane obtained from a high-resolutin PIV measurement of a zero-pressure-gradient
boundary layer with Reθ = 930. A constant velocity of Uc = 0.8 U∞ is subtracted form the stream-
wise velocity in order to bring out the packet of hairpins marked A, B, C, and D more clearly (see
Zhou et al. 1997).

results it is clear that the cooperative backward pumping of the near-wall fluid by
the streamwise aligned hairpins within a packet is one possible mechanism for the
creation of near-wall streaks. It has previously been argued that the long near-wall
low-speed streaks are the footprint of streamwise motion (or dragging) of relatively
shorter quasi-streamwise vortices. Unlike this mechanism, the proposed explanation
based on the collective action of a packet of hairpins requires no lasting memory of
the near-wall fluid after the quasi-streamwise vortex has passed by.

3.8. Generation of quasi-streamwise vortices

In figures 3 and 9, a new pair of quasi-streamwise vortices straddling the legs of the
primary hairpin vortex can also be seen. After the primary hairpin vortex legs lift,
and before the secondary hairpin vortex forms, significant spanwise motion of the
legs of the primary hairpin vortex is observed. Figure 16 is an end-view of velocity
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Figure 16. The generation of new quasi-streamwise vortices. The grey-level contours indicate the
strength of the local streamwise vorticity, ωx. Also plotted are the (w, v) velocity vectors on the
(z, y)-plane located near the kinks or secondary hairpin vortex (see figure 9) at (a) t+ = 54; (b)
t+ = 63; (c) t+ = 72; (d) t+ = 81.

field at t+ = 54 around the location where the two legs of the primary hairpin
vortex move towards each other. Also plotted in the figure are the shaded contours
of the streamwise component of vorticity. The spanwise motion of the hairpin vortex
legs along with the enhanced downward flow on their outboard side associated
with the lift-up process, forms a pair of vorticity layers of concentrated streamwise
vorticity. Near the wall, the vorticity layers arise from the no-slip condition at the
bottom boundary of the channel. Their streamwise vorticity is opposite to that of the
corresponding primary vortex leg. The effect of the wall can be represented by an
image vorticity field, which drives the vorticity layers away from each other. On the
other hand, the induced motion due to primary vortex legs pulls the two vorticity
patches towards each other. As a result, the vorticity layers remain at approximately
the same location until the legs of the primary vortex start to lift up. From figure 9, it
can be seen that this lift-up process is associated with the formation of the secondary
hairpin. The corresponding end view at t+ = 63 is shown in figure 16 (b). It can be
seen in this figure that the vorticity patches are in the beginning stages of roll-up into
compact vortices. This roll up process can be followed over time, shown in figures
16(c) and 16(d) corresponding to t+ = 72 and 81, resulting in the formation of fully
mature newly formed streamwise vortices.

The creation of new quasi-streamwise vortices adjacent to existing streamwise
vortex structures has been observed previously by Acarlar & Smith (1987b), Brooke
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& Hanratty (1993), Bernard et al. (1993) and Jimenez & Orlandi (1993). Acarlar
& Smith (1987b) suggested that the secondary streamwise vortices form beyond the
saddle point on the wall kinematically generated by the primary streamwise vortex.
This does not seem to be the case in the present simulations during the initial stages
of formation of the new streamwise vortex. However, after the complete formation of
the secondary streamwise vortex, a saddle point can be clearly seen between the old
and new streamwise vortices (see figure 16d).

3.9. Convective velocity of the hairpin vortices

The convective velocity of the hairpin structures plays an important role in their
proper characterization. In particular, since the vortex packet is made up of different
hairpins that are at different stages in their evolution they may advect at different
velocity. This in turn determines whether the packet remains coherent for a long time
or disperses quickly. Furthermore, since in the computations the individual vortices
and the hairpin packet as a whole are constantly in the process of development, any
change in their advection velocity over time must also be accounted for.

To evaluate the convection velocity we compute the two-point correlation function
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with a short time delay. Two-point space–time correlation of the vortex swirling
strength is defined as

Rλλ(r
+
x , r

+
y , t

+,∆t+) =

∫∫∫
λci(x

+, t+)λci(x
+ + r+, t+ + ∆t+)dx+, (12)

where r+ = (r+
x , r

+
y , 0) is the spatial separation between the two points in viscous wall

units, here restricted to be on the (x, y)-plane and the temporal separation, ∆t+, is set
to be equal to 9. This choice of temporal separation was chosen so that it is large
enough to measure accurately the velocity of the convecting vortical structures but
small enough to capture the variation in the convection velocity with time. Figure
17(a) shows a contour plot of the two-point short-time-delayed correlation at t+ = 63,
plotted against the streamwise and wall normal separation. Three different peaks can
be observed: a large central one, flanked on either side by a smaller peak. The
multiple peaks in the correlation are due to the presence of a downstream hairpin in
addition to the primary hairpin. The secondary and tertiary vortices have not formed
at this instant in time. The central peak corresponds to the correlation of the primary
hairpin at t+ = 63 with itself after the small time separation of 9 viscous units. The
correlation of the downstream hairpin with itself also contributed to this central peak.
The cross-correlation of the primary and downstream hairpins at the first instance
with the downstream and primary hairpins of the later time instance contributed,
respectively, to the two smaller peaks which are on either side of the primary.

The location of the central peak at rx = 118 and ry = 6 corresponds to a streamwise
velocity of 13 viscous units, which is nearly 72% of the centreline velocity of 18 in
viscous units. The presence of a single coherent peak, in spite of the superposition
of the self correlation of both the primary and downstream hairpin vortices, suggests
that these two hairpin structures are advecting at about the same convection velocity.
A non-zero vertical displacement for the peak correlation reflects the lift-up of the
hairpin structures, but the rate of lift-up is significantly smaller than streamwise
advection. The secondary peaks are a factor 10 smaller than the central peak and
the locations of the secondary peaks, as one would expect, are symmetric about the
central peak at rx = 1, ry = −90 and rz = 235, rv = 97. Based on the location of
these smaller peaks, the horizontal and vertical separation between the primary and
downstream vortex heads can be estimated as approximately 120 and 90 viscous wall
units, respectively.

The contour plot of the two-point, short-time-delayed correlation at t+ = 117, after
the generation of the secondary hairpin, is shown in figure 17(b). By this time, the
secondary vortex has formed. Again, a strong focused central peak can be observed,
indicating that there is no significant dispersion between the different hairpin vortices.
From the location of the peak, the streamwise velocity of the hairpin structures can
be estimated to be 15.7, which is about 87% of the mean turbulent channel centreline
velocity. Apart from the central peak, other local peaks of smaller magnitude can
also be seen and they are associated with the cross-correlation between the primary,
secondary, and downstream hairpins. The contour plot of the two-point short-time-
delayed correlation at t+ = 288, after the generation of the tertiary hairpin, is shown
in figure 17. Convection velocity of the packet is nearly the same as before at 15.7 in
viscous wall units.

The focused central peak in all the contour plots suggests that the different hairpins
within the packet travel downstream at nearly the same convection velocity. On the
other hand, figures 14(d) and 14(e) show that the streamwise separation between the
primary and secondary hairpin heads has increased from about 330 to 450 viscous wall
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Figure 18. Generation of asymmetric secondary and downstream hairpin vortices from an initial
structure extracted by an asymmetric event vector of α = 2 specified at y+

m = 30, with a small
spanwise component given by an asymmetry parameter of β = 0.0625. (a) t+ = 72; (b) t+ = 108.

units as the packet evolves from t+ ∼= 120 to t+ ∼= 300. This corresponds to a small
dispersive velocity of 0.66, in wall units, which is only 3.5% of the mean centreline
velocity. In comparison to the dispersion, during this time the packet would have
travelled a distance of about 3000 viscous wall units along the streamwise direction.
It thus appears that while a slow dispersion may not be ruled out, by and large the
hairpin packet remains coherent during its evolution.

3.10. Asymmetric hairpin structures

In the present simulations the perfect streamwise alignment of the hairpins is the result
of the spanwise symmetric nature of the initial vortex structure. In general, perfect
symmetry cannot be expected, and as a result the hairpin vortices will not perfectly
align along the streamwise direction. The effect of asymmetry on the evolution of
the initial vortical structure and its development into a hairpin packet has been
investigated. Asymmetry was introduced in the initial vortical structure with an
asymmetric event in the stochastic estimation procedure. The magnitude of the event
vector was kept constant in order to maintain the strength of the initial vortex
structure approximately the same, while the spanwise component of the event vector
was increased from zero at the expense of the u- and v-components. In particular, a
series of simulations was performed with the event vector, ui = [7.78(1−β2)1/2, 1.76(1−
β2)1/2, 8.0β], specified at y+

m = 30.3, for varying β, where β is the asymmetry parameter
which measures the strength of asymmetry. For β = 0 there is no asymmetry and the
initial vortex structure is the same as that shown in figure 6(a), but as the asymmetry
parameter increases, the strength of the event vector is still the same.

The influence of asymmetry on the overall evolution of the hairpin structures
remains negligibly small for an asymmetry parameter smaller than 0.125. Shown
in figure 18 are the perspective views of the hairpin packet at t+ = 72 and 108
for an asymmetry parameter of β = 0.0625. The initial structure has developed
into a primary hairpin followed by the generation of secondary and downstream
hairpins. The resulting hairpin packet is nearly symmetric and it closely resembles
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Figure 19. Generation of new asymmetric primary, secondary, tertiary, and downstream hairpin
vortices from an initial asymmetric vortex structure extracted by an event vector of α = 2 with
asymmetry parameter β = 0.25 specified at y+

m = 30. (a) t+ = 27; (b) t+ = 36; (c) t+ = 144;
(d) the top view at t+ = 144.

the hairpin packet generated under symmetric initial conditions (the evolution closely
follows the sequence shown in figures 6(a)–6(c). Thus, the mechanisms responsible for
autogeneration of new hairpin vortices leading to the formation of a hairpin packet
remain largely unaffected by small asymmetry in the initial development.

With sufficiently strong asymmetry in the initial event vector, its effect can be
distinguished in the initial structure as well as in the evolution. Vortical structure
corresponding to an asymmetry parameter of β = 0.25 will be followed. The resulting
initial structure has a pair of quasi-streamwise legs connected by a weak spanwise
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Figure 20. Top view of the hairpin packet at t+ = 144 for an initial event vector of α = 2 specified
at y+

m = 30. (a) Symmetric case; (b) asymmetric case with asymmetry parameter β = 0.25.

bridge at the downstream end, but one of the quasi-streamwise legs is much stronger,
higher, and longer than the other. A perspective view of the asymmetric structure
at t+ = 27 is shown in figure 19(a). The right-hand quasi-streamwise vortex leg
is stronger than the left-hand one. The asymmetry persists as the initial structure
evolves in time. A perspective view of the resulting structure at t+ = 36 is shown
in figure 19(b), where the initial vortex structure has developed into an asymmetric
Ω-shaped structure. Otherwise, the initial development of the asymmetric Ω-shaped
hairpin followed along the same lines as the symmetric initial condition. A pair of
asymmetric downstream vortical tongues can also be seen.

Figure 19(c) shows the vortex structure at a much later time of t+ = 144. At
this instant, in addition to the primary hairpin, secondary and tertiary hairpin-like
structures can also be seen. The right-hand leg of the secondary hairpin can be seen,
while the other quasi-streamwise vortex leg is so weak that it is not seen. On the
other hand, in the case of the tertiary hairpin only the left-hand quasi-streamwise
leg is strong and visible. Therefore, the secondary and tertiary hairpins, resemble
the asymmetric one-sided cane- or hook-like hairpin vortices often referred to in
literature (Robinson 1991). These cane-like secondary and tertiary structures are
clearly visible in the top view shown in figure 20(b). Based on experimental evidence
Nishino, Kasagi & Hirata (1988) and Guezennec & Choi (1989) observe that quasi-
streamwise vortices in the near-wall region occur most often singly and only rarely
as counter-rotating pairs of equal strength. Through detailed probing of the DNS
boundary-layer database (Spalart 1988), Robinson (1991) has pointed out that the
preferred arrangement for hairpin vortices in a turbulent boundary layer is to be
asymmetric and one-sided. The present results suggest that experimentally observed
asymmetry is possibly due to the influence of local spanwise velocity.

The top view of the hairpin structure at t+ = 144 for the corresponding symmetric
case with initial event vector of α = 2 specified at y+ = 30.3 is shown in figure
20(a). As pointed out earlier, the streamwise distance of 340 viscous units between
the primary and secondary hairpins in the symmetric case is significantly larger than
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the experimentally measured separation of about 150 viscous wall units (Meinhart
et al. 1999). Whereas, in the asymmetric case the streamwise distance between the
primary and secondary and between the secondary and tertiary hairpin heads is about
220 and 165 viscous wall units, respectively. These streamwise separations compare
better with the experimental measurements. Furthermore, in the asymmetric case
the formation of tertiary hairpin is nearly complete by t+ = 144. Whereas, in the
symmetric case the tertiary hairpin has not even begun to form by this time. In
general, it is observed that asymmetry aids in the formation of subsidiary hairpins.
In fact, the initial threshold amplitude for the formation of secondary and tertiary
hairpins appears to be somewhat lower with asymmetry. Under asymmetry, the new
hairpins form more readily in rapid succession and their streamwise separation is
smaller, in better comparison with the experiments.

4. Summary and conclusions
Viscous evolution of a single hairpin having strength and core diameter that are

representative of vortex motion that occurs in near-wall boundary-layer turbulence has
been studied in a background mean turbulent flow. The initial structure was obtained
using a linear stochastic estimation procedure applied to the two-point correlation
of a Reτ = 180 channel-flow direct-numerical-simulation database (Kim et al. 1987).
The basic event vector employed in the stochastic estimation of the initial structure is
a symmetric Q2 vector whose streamwise and wall normal velocity perturbations are
determined based on maximum contribution to Reynolds shear stress. The magnitude
of the event vector and its location were varied and correspondingly a wide range of
strength and location of the initial structure was considered.

The stochastically estimated initial vortical structure consists of a counter-rotating
pair of symmetric quasi-streamwise vortices that are tilted up with their upstream
end close to the wall and their downstream end away from the wall. The quasi-
streamwise vortices are connected at their downstream end by a narrow spanwise
bridge whose strength increases as the location of the initial event vector moves away
from the boundary. This initial vortical structure always develops into a classical
hairpin-shaped vortex with an Ω-shaped head and a pair of counter-rotating long
quasi-streamwise vortex legs that are connected to the head by a neck region. The
strength and location of the initial event vector only determine the speed at which this
formation process proceeds; stronger initial structure develops into the fully formed
hairpin vortex more rapidly.

The subsequent development of the primary hairpin vortex exhibits a threshold
behaviour. Primary vortices of strength below this threshold are observed to maintain
their structural integrity for hundreds of viscous timescales but undergo a very slow
decay process, without the generation of any additional structures. Stronger initial
vortices, on the other hand, result in the generation of a secondary hairpin vortex on
its upstream side. The mechanism behind the generation of the secondary hairpin very
much resembles the formation of the primary hairpin. A kink forms in the long legs
of the primary hairpin vortex owing to the mutual induction process. The shear layer
that forms between the long legs is at its peak strength near the kink. While the shear
layer rolls-up into a compact spanwise vortex, the long legs of the primary vortex sever
near the kink. The upstream sections of the legs viscously connect with the rolled-up
spanwise vortex to form the secondary hairpin vortex. The secondary hairpin, in
turn, results in the generation of a tertiary hairpin upstream of it. The process by
which these additional vortices are generated also proceeds along similar lines to
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those observed for primary and secondary vortices. The threshold behaviour is a clear
indication of the importance of nonlinearity in the formation of hairpin vortices.

The computational results indicate the existence of an optimal wall normal location
for the initial vortical structure where the threshold amplitude for the generation of
new hairpin vortices is at its minimum. This can be explained on the basis of
the delicate balance between self-induced and mutually induced motion of the quasi-
streamwise vortex legs which tend to lift the vortices up and back, and the influence of
mean shear which stretches and intensifies the vortices along the streamwise direction.
In general, it can be expected that if the hairpin is initially strong it will quickly lead to
the generation of a new hairpin. If the initial hairpin is weak, it needs to lift-up more
and gain sufficient strength before it can generate a new hairpin. Below the threshold
initial strength, the hairpin does not lift up enough to gain sufficient strength to
generate a new hairpin. Based on these observations, the following hypothesis can
now be made about the generation process of hairpin vortices in a turbulent boundary
layer. Only a sufficiently strong hairpin vortex results in the formation of a new hairpin.
Weaker ones decay without offspring. The age at which a hairpin gives birth to a
new one depends on its initial strength. Stronger hairpins generate newer ones sooner
than weaker hairpins.

The probability that hairpin vortices strong enough to generate subsequent hairpin
vortices occur in a natural turbulent boundary layer needs to be considered. The
strength of the initial vortex structure relative to the typical local turbulent fluctuation
is dependent on the magnitude of the event vector. For example, the symmetric Q2
event vector for amplitude α = 1 corresponds to a peak Reynolds shear stress of
umvm ≈ −2σuσv , where σu and σv are the r.m.s. streamwise and wall normal velocity
components based on the data of Moin et al. (1987). This estimate is only weakly
dependent on the y-location of the event vector. This suggests that for α = 1 the
peak Reynolds shear stress is about five times the mean Reynolds shear stress, uv
(here we have used the standard turbulent wall-layer estimate that uv ≈ 0.4 σuσv).
The peak Reynolds shear stress for the stronger initial structures with α = 2 and
α = 3 correspondingly scale up to 20 and 45 times uv, respectively. Although the
average Reynolds shear stress increases as the initial hairpin structure evolves (see
figure 12), in general, the peak value decreases with time. The increase in the average
Reynolds shear stress is due to the growth in size of the hairpin packet. The peak
Reynolds shear stress increases in magnitude only during the formation of secondary
and tertiary hairpin structures, but never becomes larger than its initial value.

There is ample experimental evidence to indicate that such large Reynolds stress
excursions from the mean are common and typical of bursts associated with a packet
of hairpin vortices. The dominant contribution to the mean Reynolds shear stress is
during periods of rapid outward bursts from the near-wall region. Their frequency of
occurrence is such that the conditional average of the Reynolds shear stress during
the burst process can be an order magnitude larger than uv. Blackwelder & Kaplan
(1976) measured the conditional average to be about 10 uv. The instantaneous peak
Reynolds shear stress within the burst process can, in fact, be even higher. For
instance, Nychas, Hershey & Brodkey (1973) have reported instantaneous values of
uv as high as 40 uv. Even higher instantaneous Reynolds shear stress of the order
uv ≈ 62 uv have been reported by Willmarth & Lu (1972). It is therefore reasonable
to consider that event vectors with α = 2 and α = 3 provide initial structures whose
magnitude are consistent with experimentally observed hairpin packets.

The formation of new hairpins on the upstream side of a mature hairpin vortex
has previously been addressed by Smith and coworkers (Haidari & Smith 1994;
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Smith et al. 1991). The present observations of the regeneration process are in
general agreement with their pioneering work. The direct numerical solutions of the
Navier–Stokes equations have allowed us to follow closely the vortex break-up and
viscous reconnection processes. In addition to the secondary and tertiary vortices,
new hairpins also form on the downstream side of the primary hairpin vortex. The
generation of new hairpin vortices on the downstream side appears to have never been
previously reported. Here, we observe that the downstream vortices grow out of a
pair of quasi-streamwise vortical tongues that stick out from the head of the primary
hairpin on the downstream side. While this at first might look surprising and appear
as an artifact of the stochastically estimated initial condition, there is strong evidence
that these downstream vortical tongues are realistic features of a typical hairpin. The
flow visualizations of Haidari & Smith (1994) show clear evidence of quasi-streamwise
vortical tongues to the downstream side of their initial hairpin structures. The first
downstream hairpin vortex, once formed, has a pair of downstream vortical tongues of
its own, which rapidly evolve into a second downstream hairpin vortex. This process
continues, resulting in the generation of several downstream hairpin vortices in quick
succession, but most of these hairpins are relatively weak and undergo rapid decay.

The primary hairpin and the newly formed hairpins have a definite spatial re-
lationship and together they form a coherent hairpin packet. The envelope of the
composite vortical structure has a tent-like appearance forming an angle of 10◦ to
15◦ upstream of the primary hairpin and an angle of about −7◦ to −15◦ downstream
of the primary hairpin. The instantaneous velocity vector plot corresponding to the
hairpin packet on an (x, y)- plane passing through the centre of the hairpin heads is in
excellent agreement with the experimental PIV measurements of Meinhart & Adrian
(1995) and Meinhart et al. (1999). These instantaneous planar ((x, y)-plane) experi-
mental velocity measurements taken over a range of Reynolds numbers confirm the
existence of coherent packet of hairpin vortices in a turbulent wall layer. Moreover,
the experimental data reveal signatures corresponding to hairpin packets in over 70%
of the realizations. Thus, packets appear to be a very common occurrence in natural
boundary layers. This is not to say that they are the only mechanism, but that they
do occur frequently.

Three factors in the present work make it possible to observe hairpin packets: the
use of contours of λ2

ci to visualize the eddies, the growth of the packets in a clean
background flow unobscured by other eddies and/or interactions with other eddies,
and the use of Gallilean reference frames. Even so, once one recognizes the hairpin
packet paradigm, it becomes possible to observe the packets in fully turbulent data
sets. For example, Robinsons’s (1991, 1993) figures when reexamined show signatures
of hairpins occurring in succession, although they are surrounded by a clutter of other
vortices and vortex fragments. Work in progress in our group has also shown that
hairpin packets are readily found in DNS at Reτ = 395, although they are surrounded
by many other eddies. The significance of hairpin packets in the total structure of
wall turbulence must be established by future work.

Within the hairpin packet, the individual hairpins have a nearly self-similar struc-
ture. The individual hairpins are tilted up, with the tilt angle varying from about 8◦ at
the upstream end of the quasi-streamwise vortex legs to about 75◦ at the downstream
end of the hairpin head. The average tilt angle is about 45◦, in agreement with the
results of Head & Bandyopadhyay (1981), Acarlar & Smith (1987 a, b) and Haidari
& Smith (1994).

A near-wall inclined shear layer associated with each hairpin plays an important
role in the generation of new hairpin vortices. The multiple Q2 signature associated



Coherent packets of hairpin vortices in channel flow 393

with the computed hairpin packet is consistent with the experimental measurement
of multiple Q2 events during a burst process (Bogard & Tiederman 1986; Luchik
& Tiederman 1987; Tardu 1995). As a consequence of the sequence of hairpin
vortices aligned one behind the other along the streamwise direction, a long low-
speed region forms between the legs of the hairpins in the near-wall region. While the
individual vortices are observed to be about 400 viscous wall units in length along
the streamwise direction, owing to the cooperative action between all the streamwise
aligned hairpins, the resulting low-speed streak is observed to be significantly longer.
Thus, the often observed long low-speed streaks are consistent with the existence of
a coherent packet of hairpin vortices. However, there have been other mechanisms
proposed to explain the near-wall low-speed streaks (see for example Jeong et al. 1997;
Hamilton, Kim & Waleffe 1995). Recently Schoppa & Hussain (1997) illustrated that
an initial condition consisting of a staggered pattern of streamwise vortices also leads
to near-wall structures that are consistent with other numerical and experimental
observations. If one restricts attention to the quasi-streamwise vortices in the near-
wall region y+ 6 60, the geometric patterns and the lengthscale of the near-wall
structures that arise from the development of an asymmetric hairpin vortex (shown
in figures 19 and 20) are in reasonable agreement with those observed by Jeong et al.
(1997) and Schoppa & Hussain (1997).

The robustness of the mechanism for generating new hairpins and the streamwise
alignment of the resulting hairpins indicates that the turbulent boundary layer may
not be completely described by a random distribution of hairpins of different sizes
and ages as in Perry & Chong (1982) and Perry et al. (1986). Spatial coherence may
exist between the neighbouring hairpins. The arrangement of the hairpins into groups
or packets with definite size and age distribution has a potentially large effect on the
transport properties of the hairpins. In a fully turbulent boundary layer, as the various
hairpin packets grow, it is likely that they run into each other and interact in a complex
manner and may decrease the level of organization. Furthermore, the outer-layer
perturbations and other vortical debris, which are present in a turbulent boundary
layer at higher Reynolds numbers, may also impact the coherence of the near-wall
packets. The present simulations say nothing about interactions between groups of
hairpins or about the effect of outer-layer perturbations on the level of internal
coherence or organization within the near-wall packets. The present computations
pertain only to the early phases of hairpin packet formation and therefore the results
should only be applied to the near-wall layer up to several hundred viscous wall
units. However, experimental evidence (Tomkins 1997) suggests that even at higher
Reynolds numbers, streamwise coherence persists between the neighbouring near-wall
vortical structures, in spite of what appears to be random organization of some of the
outer structures. Thus, we believe that the organization of near-wall hairpin vortices
is important even in a high-Reynolds-number fully turbulent flow. Clearly, further
investigation is required to fully ascertain the quantitative effect of the turbulent
large scale outer structures on the organization of near-wall hairpin vortices. Existing
hairpin models such as Perry & Chong (1982) and Perry et al. (1986) can then be
further strengthened by incorporating the effect of hairpin organization into packets.

A mechanism for the generation of quasi-streamwise vortices has also been identi-
fied. This mechanism involves the spanwise motion of the primary vortex legs along
with the enhanced downward flow associated with its lift-up process, which forms
a pair of near wall layers of concentrated streamwise vorticity. As the lift-up pro-
cess continues, these patches of streamwise vorticity roll-up into coherent streamwise
vortices. The streamwise vortices tend to form on the outboard side of the primary
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vortex legs. The creation of new quasi-streamwise vortices besides existing streamwise
vortex structures has previously been observed by many (Acarlar & Smith 1987b;
Bernard et al. 1993; Brooke & Hanratty 1993; Jimenez & Orlandi 1993). The present
generation mechanism is consistent with those proposed by Brooke & Hanratty (1993)
and Bernard et al. (1993) based on detailed analysis of their DNS databases. The
generation of additional quasi-streamwise vortices helps explain the frequent obser-
vation that the streamwise vortices are more populous than transverse vortices (cf.
Robinson 1991).

The present results clearly establish the causes and effects and provide a mechanistic
picture of the autogeneration process leading to the natural formation of hairpin
packets. Furthermore, the resulting structure provides a reasonably unified picture of
the turbulent near-wall region, capable of explaining many of the previously observed
flow features. While the present simulations are performed at a low Reynolds number,
we think that the coherent vortex packets are a fundamental flow feature of the near-
wall region, even at higher Reynolds numbers. The experimental results of Meinhart
et al. (1999) indicate that hairpin vortex packets are a common feature in the low-
Reynolds-number near-wall region of high-Reynolds-number flows. The mechanisms
for creating packets of hairpins show no strong sensitivity to outer flow conditions.
The experimental results of Meinhart & Adrian (1995) and Urushihara, Meinhart &
Adrian (1993) also show that hairpin vortex packets occur from the wall layer out
to the logarithmic layer of turbulent boundary-layer flow and turbulent pipe flow.
Thus, we conjecture that the results reported here can be applied to higher Reynolds
number as well, although it must be allowed that some additional effects may occur.
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of Naval Research and the National Science Foundation. Computations presented
here were performed on a Cray C90 at the Pittsburgh Supercomputer Center.
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